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Cellular automata have been used to model the formation and dynamics of pat-
terns in a variety of chemical, biological, and ecological systems. However, for
patterns in which sharp interfaces form and propagate, automata simulations can ex-
hibit undesirable properties, including spurious anisotropy and poor representation
of interface curvature effects. These simulations are also prohibitively slow when
high accuracy is required, even in two dimensions. Also, the highly discrete nature
of automata models makes theoretical analysis difficult. In this paper, we present a
method for generating interface motions that is similar to the threshold dynamics
type cellular automata, but based on continuous convolutions rather than discrete
sums. These convolution-generated motions naturally achieve the fine-grid limit of
the corresponding automata, and they are also well suited to numerical and theoretical
analysis. Because of this, the desired pattern dynamics can be computed accurately
and efficiently using adaptive resolution and fast Fourier transform techniques, and
for a large class of convolutions the limiting interface motion laws can be derived
analytically. Thus convolution-generated motion provides a numerically and analyt-
ically tractable link between cellular automata models and the smooth features of
pattern dynamics. This is useful both as a means of describing the continuum lim-
its of automata and as an independent foundation for expressing models for pattern
dynamics. In this latter role, it also has a number of benefits over the traditional
reaction—diffusion/Ginzburg—Landau continuum PDE models of pattern formation,
which yield true moving interfaces only as singular limits. We illustrate the power
of this approach with convolution-generated motion models for pattern dynamics in
developmental biology and excitable mediag 1999 Academic Press

1 This research was partially supported by an NSERC Postdoctoral Scholarship, NSF DMS-9706827, and
N00014-97-1-0027.

2 This research was partially supported by NSF DMS-9706827 and NSF DMS-9615854.

3 This research was partially supported by NSF DMS-9706827 and NSF DMS-9615854.

836

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



CONVOLUTION-BASED METHODS FOR AUTOMATA MODELS 837

Key Words:convolution; cellular automata; threshold growth; excitable media;
interface; motion by mean curvature; spectral method.

1. INTRODUCTION

There are many natural and industrial problems in which sharp interfaces form
propagate. Notable examples include the growth of crystalline materials, the processin
enhancement of images, the evolution of ecological systems, and the waves of excit
that occur in heart and neural tissue.

To model these and other complex phenomena, a wide variety of cellular automata
been used [5, 12, 27, 36]. A particularly fundamental class is the threshold dynamics
discussed in Section 2. Briefly, in these models, the spatial domain is divided into a f
lattice and each lattice point is assigned one of a finite number of states. The state of
cell is updated by forming a weighted sum over a neighborhood and thresholding in s
fashion.

Unfortunately, several difficulties arise when these models are used as the basi
numerical simulations. As we shall see, these automata give a crude approximation ¢
front and a discontinuous approximation to the motion. This leads to a number of qualite
problems, including an inadequate treatment (or complete absence) of curvature effect
unwanted anisotropies. Automata-based discretizations also have the disadvantage
they may not give a practical means for evaluating quantities defined on the interface c
independently varying parameters defined in the model. Furthermore, whenever acc
approximations of the limiting motion are sought, these simple lattice-based technic
become prohibitively slow, even for simple problems in two dimensions.

In this present work, we consider threshold dynamics type schemes which are b
on convolutions rather than discrete sums. These convolution-generated motions natt
give the limiting form of automata as the mesh spacing goes to zero and can be discre
efficiently and accurately using adaptive grid refinement with fast Fourier transforms. Tt
methods are particularly well suited to modeling continua because they accurately apy
imate the continuum limit (in space) and thus eliminate the qualitative grid effects t
are problematic in automata-based discretizations. Numerical experiments for convolu
based models arising in developmental biology and excitable media are used to validat
performance of our methods.

The outline of the paper follows. Section 2 reviews threshold dynamics models for in
face motion. In Section 3, we review convolution-generated motion and give an overv
of the class of obtainable motion laws. Section 4 discusses the numerical approximati
convolution-generated motion and shows that discretizations based on fast Fourier t
forms on adaptively refined grids are faster and more accurate than direct or pseudosp
approximations. In Section 5, we apply our proposed discretization to a model arising ir
velopmental biology and compare our results to those from the usual automaton. Sect
applies our proposed discretization to a convolution-based model for excitable media
compares the result to automata-based methods. This also indicates the computatior
vantages of convolution-generated motion over reaction—diffusion/Ginzburg—Landau |
models for pattern dynamics. In Section 7, we summarize our results and outline cu
research. Finally, the Appendix concludes with a specification of the convolution-ba
model for excitable media that was used in Section 6.
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2. CELLULAR AUTOMATA MODELS

Cellular automata are discrete dynamical systems. They consist of a lattice of sites,
of which may take on a finite number of “states,” or values. The site values evolve
synchronous, discrete time steps according to an evolution rule that specifies the up
value in terms of the current values at neighboring sites [35].

We will focus on a particularly important class of automata and discuss some of tl
limitations as a modeling and simulation tool.

2.1. Threshold Dynamics

Animportant class of automata can be obtained by imagining each neighbor’s contribt
to be a simple “vote” for or against a certain outcome; any number of affirmative votes ak
a certain threshold will yield that outcome. For example, consider the voting automz
displayed in Fig. 1. Here, there are two states, 1 and 0. A sum of the cell’s own vote
that of its eight nearest neighbors is formed (see Fig. 1b). Where this sum is greater th
equal to the threshold value (which in this case is 3) the cell is assigned state 1, and
0 elsewhere. By denoting the state of ggllk) at time stem by Cf}, we obtain a simple
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FIG. 1. One step of a simple automaton consists of summing over the nearest neighbors and thresholdi
this example, we sum over a nine-point neighborhood and take the updated set to be all points which have
of 3 or more. (a) Original region. (b) Sum of neighbors. (c) Final region.
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analytic representation for the automata model,

cn+l _ {1 if Z—lgj’,k’gl Cjn—j’,k—k’ > X
Ik 0  otherwise,

wherea represents the threshold value.
More generally, each vote can be assigned some weight. LéttiagZ? be the neigh-

borhood of interest and/ be the matrix of weights, we obtain the update rule for thresho

dynamics,

Cnl i e Wik Cll e = 4 )

ik = i

0 otherwise.

2.2. Threshold Dynamics as a Method for Interface Motion

In order to model a desired front motion using the update rule (1), an appropriate ne
borhood and weight values must be chosen.

In early cellular automata, a neighborhood of nearest neighbors was selected. This ¢
has the advantages of speed and simplicity but is inadequate for modeling many intere
natural phenomena. In particular, rules which use these small neighborhoods are una
model the effects of curvature on the speed of propagation [13, 33]. These simple auto
also add grid-based anisotropy to the front motion [25]. This effect is easily seen for a
regular lattice since a front oriented at4Bom the horizontal travels af2 times the speed
of a vertical or horizontal front.

In an attempt to reduce grid effects and to obtain an approximation to the curva
contribution of the motion, several authors have considered refining the lattice and ta
larger neighborhoods [11, 13, 30, 31, 10, 8, 9, 7, 16]. In carrying out this procedure, se\
interesting questions arise. In particular:

1. What is the limiting motion of the automata model as the mesh is refined and
neighborhoods increased?

2. How well does a particular automaton approximate its continuum limit? In particu
how much refinement is required to faithfully reproduce curvature effects and to elimir
unwanted grid effects?

3. Ifitisimpractical to approximate the limiting motion using an automaton, how shot
the limiting motion be computed?

We now review recent results which provide a partial answer to the first of these questi
Answers to the remaining questions will be the focus of the remainder of the paper.

3. CONVOLUTION-GENERATED MOTION

The procedure of forming a weighted sum over some neighborhood, followed by th
holding at some value, is reminiscent of convolution-generated motion [24]. This i
procedure for defining a time-discrete evolution of an interface that is the boundary
region, as follows: Given an initial regiaR in RY, let

i RY> R
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be the characteristic function 6f, i.e.,

) = 1 if Xx e Q
X =10 otherwise.

We define the updated regi@t'" to be the set
Q"W = {x: x * K(X) > A}

for some threshold valuee R and some convolution kernel functiok; R — R, where
* denotes the convolution

X*K(X)=/RdK(X—Y)x(Y)dY-

Or, interms of characteristic functions, we define the updated characteristic fupttitir)
by

(1) — {1 ?fx * K(X) > A
0 if x * K(X) <A.

Convolution-generated motion can be used to produce a great variety of interface mot
which are amenable to both theoretical analysis and computation. On the theoretical
the resulting analytic velocity of the interface (in the proper continuous time limit) ¢
be obtained explicitly for a large class of convolution kernels, and general convoluti
generated motions can also be described in terms of a geometric Huygens’ principle
the computational side, accurate and efficient discretizations can be designed for comp
convolution-generated motions. These aspects of the method are described in more
in the following sections.

First, we recall a special case of convolution-generated motion which produces a clas
“motion by mean curvature.” This simple algorithm highlights the elegance and power of
convolution formulation. Also, the discovery and investigation of this particular algoritt
was our original motivation for considering convolutions as a means of generating inter
motion.

3.1. Diffusion-Generated Motion by Mean Curvature

A particularly simple convolution-based algorithm exists for moving an interface w
a normal speed equal to its mean curvature [18, 19]. If the initial region has character
function yx, the updated region at a tinzet is

{Xi)(*K(X)>;}, (2
whereK is a Gaussian of width/ At,
1 1 5
K(x) = T AL exp<—4At|x| )

“Diffusion-generated” refers to the fact that convolution with the Gaussian kernel «
be realized by solving the diffusion equation for a timé, with x as initial data. Thus
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this procedure can be described informally as diffusing the set for a short time, and
thresholding at thé level to obtain a new set. It is intuitively clear that such a diffusio
will cause a curvature-dependent blurring of the set boundary, and a formal analys
the diffusion equation [17-19] shows that this should result in precisely motion by m
curvature. Indeed, a variety of rigorous proofs have been given to show that this sir
algorithm converges to motion by mean curvature in any number of dimensions as the
step size goes to zero [6, 2, 15]. Note also that this procedure has a direct extension |
motion of multiple regions, i.e., interfaces which intersect to form triple points or ott
multiple junctions. See [18, 17, 19, 22] for details.

Any positive, radially symmetric kernel may be used in place of the Gaussian to ob
a convolution-generated mean curvature motion, as was pointed out in [18] and pr
rigorously in [14]. For example, in two dimensions we can ti#kéo be the (normalized)
characteristic function for a disc of radiuscentered at the origin,

i .
K (x) = {mz if x| <Tr 3)
0 otherwise,

wherer ~ /At.

3.2. General Convolution-Generated Motion

Based on the update rule (1), it is clear that we are interested in more general forn
convolution-generated motion. In particular, it is natural to consider the following gene
izations of (2):

1. Allow different convolution kernel function&]. The method formally allows arbitrary
kernel functions, and asymmetrical kernels can be used to produce anisotropic motion
as originally suggested in [18]. Without loss of generality, we shall assume that the ke
has been normalized to satisfyK (x) dx = 1.

2. Allow a general threshold,, in {x: x * K(X) > A}. This provides a continuum of
convolution-generated methods parameterized. B0, 1) with A =0 corresponding to
the standard Huygens’ principle for constant motion (see [24]))@591(31 corresponding to
motion by mean curvature. In generalgan also be allowed to depend on other quantitie
For example, a variety af, =a + bk diffusion-generated motions can be obtained wit
A= Z+cV/At[15,17, 22], s0. = A(At) isauseful form. More generallymay be selected
locally as a function of the normal direction defined by the level set§ ofy to achieve
an interesting variety of anisotropic motions [24].

These generalizations produce a semi-discrete version of threshold dynamics—i.e.,
tinuous in space but discrete in “time.” To obtain an approximation of the continuc
dynamics (assuming such a limit exists), we must somehow introduce a time step and
ify what it means to take the small time step limit. Intuitively, the effective time step
determined by the size of the supportkf since the larger the support &f, the further
its convolution will move the set boundary. Thus the small time step limit is obtained
scaling down the support d&f in a suitable fashion. More precisely, let us scale the fixe
kernelK (x) by the mass preserving forka(x/r)/r 9, so that the typical radius of its support
scales like « 1. By convolving this scaled kernel with and thresholding the result at
the set boundary is displaced by an amount that is some functigrsf). If we demand
that in the limit of smallr this displacement be one time step of some limiting motio
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Origin
of shape

Shape which
defines motion

Boundary of
updated region Boundary of
initial region

FIG. 2. WhenK is non-negative and =0, Huygens’ principle for constant motion is produced.

law, s(r) = vy At, this fixes the relation between the size of the kenmnehnd the effective
time step,At. Note, in particular, that iK is a Gaussian kernel with support of sizehis
general procedure yieldst ~ r2. This is precisely the scaling relation between kernel siz
and time step used in the diffusion-generated case discussed above, although there
also be motivated by the simple fact that diffusion for a tixtewill smear (and thus move)
the set boundary over a distance /At.

3.3. Obtainable Motion Laws

It is natural to ask what motion laws arise from convolution-generated motion and t
the radius of the kernel scales wittt.

In the case wherK is non-negative and = 0, convolution-generated motion reduces tt
Huygens’ principle for “constant motion.” Specifically, the updated set is giertlyas
follows (see Fig. 2):

SetN equal to the shape consisting of all points whi€ris non-zero. Using only
translations, place copies 4f so that its origin is positioned at the boundary of
the initial set. The forward envelope of shapes forms the boundary of the updated
set.
If we assume that each update corresponds to one time step of lendtien/\ and hence
K have radii which scale liket.

Another interesting case occurs in two dimensions whenl/2 andK is the scaled
characteristic function of a symmetric regio (i.e., N = —N). If we definer (9) to be
the polar representation of the boundary\éfthen it is easy to show that a leading orde
approximation of the displacement of a smooth initial boundam?{8)«/6 [24]. Thus
general “anisotropic curvature motions” of the form

vn = b(0)x 4)
are obtained simply by taking

r (@) = +/6b(6)At.
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FIG. 3. WhenN\ is symmetric and. = 1/2, a geometric algorithm for anisotropic curvature motion is pro
duced by placing shapeg2.inside the original region by area. The boundary of the updated region is given by
locus of shape centers.

Similar to the case of constant motion, this algorithm also has a simple geometric ver
[24] (see Fig. 3):

Using only translations, place copies®fso that exactly half of their area lies
inside the original region. The locus of shape centers forms the boundary of the
updated set.

A combination of these two types of motion can be obtained by varying the thresh
A. This class of methods has been studied in the recent and comprehensive work of
et al.[15] for the case wherg is a constant ok = A(At). They give explicit formulas for
the limiting surface normal velocity, in terms of various moments of the kernel function
in any number of dimensions. Moreover, they also give rigorous proof that the convoluti
generated motions converge to their statgdnotion laws in the limit ag\t — 0.

To produce more general motiorismay be allowed to depend on other quantities. F
example, in [24]. is defined locally as a function of the normal direction to obtain motior
of the form

vn=a(d) + b()«,

whereb is non-negative and continuous. Nonlocal choicesifatso produce interesting
flows. For example, volume preserving motion by mean curvature [4, 20}j.€.x — k,
wherex is the surface average of the mean curvature, is realized by selecting the level
encloses the same volume as the original set in diffusion-generated motion, instead
% level [21]. Convergence of these last two procedures has been demonstrated numer
but not proven analytically.

4. NUMERICAL APPROXIMATION

We now discuss the numerical approximation of convolution-generated motion. For ill
trative purposes, our examples will focus on the fundamental, but simple, case of anisot
curvature-dependent motion (4). Subsequent sections will build upon these results t
proximate models arising in developmental biology and excitable media.
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4.1. Overview

Perhaps the most obvious method for approximating convolution-generated motic
with threshold dynamics. If small neighborhoods are used, however, these automata
not model the effects of curvature on the speed of propagation. They also add unwe
anisotropy to the front motion. Thus, large neighborhoods typically must be used if eve
gualitative agreement with the model is sought.

Since large neighborhoods are inefficient to treat using a direct evaluation of the autol
rule (1), itis natural to evaluate the sum pseudospectrally. Alternatively, the summation
may be approximated by a number of one-dimensional convolutions [13, 30, 31, 10, 8
This approach is rather limited, however, because it accommodates only a very small
of sums.

4.2. Pseudospectral Approximation

An obvious way of approximating convolution-generated motion is with a regular latt
of grid points,{x;x}. Using this approach, functions are represented by their values at ¢
points. This makes the thresholding step trivial since it can be carried out pointwise.
convolution step is also straightforward since it reduces to a summation (1) which ca
treated efficiently in Fourier space using fast Fourier transform (FFT) methods.

Thus a simple (but naive) discretization for convolution-generated motion is as follo

ALGORITHM RegularLattice.

GIVEN: A kernel, K, an initial region,R, and a regular lattice of point§xy}.

BEGIN _
(1) SetCjx = {1 "X < R
0 otherwise
(2) Set Kjk] equal to the discrete Fourier transform &F(x;i)].
(3) REPEAT for all steps:
BEGIN
(a) Set ﬁjk] equal to the discrete Fourier transform @ff].
(b) Convolve by replacing ead® with Cjx K.
(c) Set Cj«] equal to the inverse Fourier transform 63‘,—;[].
1 ifCk> A
(d) Threshold eackix by settingCjx = {0 oth:akrwise.
END
END

Unfortunately, the algorithm RegularLattice as well as other grid-based techniques
30, 31, 10, 8, 9, 7,16] have several deficiencies. These include:

1. The convolution step must propagate the leveksatleast one grid point, otherwise
the thresholding step will keep the front stationary [19]. Thus, the grid spacing must
much less than the speed of propagation of the front times the time step size:

AX <K vhAt. ©))

Note that this requirement can be especially severe for the fundamental case of curv
motion since it applies even if the local curvature of the interface is small. See Fig. 4 fo
illustration of a shape which has “frozen” in place because the mesh spacing is too lar
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FIG. 4. The motion cannot be resolved by the algorithm RegularLattice and the interface remains statiol
Here, diffusion-generated motion is used with a time steptof= 0.001 and a mesh spacing ak = 1/54.

2. The underlying lattice will contribute an unwanted anisotropy to the motion since
front must travel an integer number of cells per time step in the local normal direction. T
grid-based anisotropy is often apparent even when large neighborhoods are used (se
Fig. 5 of [31]). To reduce these effects, Markus and Hess [16] considered a randon
lattice. Unfortunately, this approach does not provide a means of generating a de
anisotropy. It also has the disadvantage that the summation step is carried out directly,
simple transform methods cannot be used on an irregular lattice. See [25] for a stuc
randomized rules for reducing grid-based anisotropy.

3. Inmany convolution-based algorithms, Richardson extrapolation in the time step
can be used to obtain an accelerated convergence to the limiting motion law [23]. Usi

a b
[ . . . . . . 0 0 0 0 0 0 0
/ ;___ T
= 5 0o i o b 1 1 N o
________________________ ,
. . 0 1 1 Lo~ /] o
Jeeaen s bl e

L] L] L] L] L] L] .

FIG. 5. An automata representation of the original regi®),using a uniform mesh. (a) Original region.
(b) CA representation.
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lattice-based discretization, however, the front must travel an integer number of cells
time step. Thus, very small differences in the levebsean produce jumps (of siz&x) in
the front location after thresholding. This type of irregular error is undesirable becaus
makes the construction of higher order accurate, extrapolated results impractical [23].

4. A further difficulty with the lattice-based approach is that each thresholding s
produces arO(AX) displacement in the front position (see, e.g., Fig. 5). To reduce tt
error to an acceptable level often necessitates a prohibitively large number of grid pc
whenever an accurate representation of the limiting motion is desired. For example, con
a diffusion-generated approximation to curvature motion. Here, each step of the algor
produces a® (At?) error in the position of the front [21]. To preserve this overall accurac
grid points must be a distan&(At?) apart since each thresholding step produces an er
which is comparable to the mesh spacing. THagl/At%) grid pointd (and Q(1/At*)
operations per step) are required whenever a uniform mesh is used. Even with a bz
method,2(1/At®) operations per step are needed [23], which can be impractical wt
accurate results are sought.

In many problems, these limitations can be overcome by using discretizations base
fast Fourier transforms on adaptively refined grids [23]. A discussion of these meth
follows.

4.3. Convolution-Generated Motion Algorithm

As we saw in the previous section, a pointwise thresholding displaces the front a dist:
which is comparable to the mesh spacing. To eliminate this effect, and to obtain a n
efficient computation, an improved approximation to the thresholding step must be deri

Itis easily seen that the Fourier coefficients of the characteristic function for a rBgio
are givenexactlyby

Xik =// exp(—2ijx) exp(—2riky) d A
R

forintegersj andk. Using approximations of these integrals to derive the Fourier coefficiel
gives a greatly improved discretization of convolution-generated motion [23, 24]:

ALGORITHM CG-Motion.

GIVEN: A kernel, K, and an initial regionR.
BEGIN
(1) Setyjx = J [rexp(—2rijx) exp(—2riky) dA, —N < j,k < N.
(2) SetKjx = [ [ K(x, y)exp(—2rijx)exp(—2riky) dA, —N < j, k < N.
(3) REPEAT for all steps:
BEGIN
(a) Convolve by replacing eaghx With 7jx K-
(b) Threshold by settingjc= [ /g, €xp(—27ijx) exp(—2riky)d A, =N <j, k<N,
whereR(t) = {(X, y) : Z_st,kSN Xik €XP(—27ijX) exp(—2miky) > A}.
END
END

4F(n) = Q(f(n)) if there exist positive constantsandn, such thatF (n) > cf (n) wheneven > n,.
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FIG. 6. Integration is carried out by dividing the domain into squares. Contributions from all but the fin
regions can be evaluated exactly.

Note that the convolution step acts as a filter, removing high-frequency components. ¢
this convolution step is linear, the different Fourier modes do not interact and ther
never a need to treat the highest frequency components. Thus, an excellent approxin
is obtained using fewer Fourier modes than might otherwise be expected. Indeed, a
high degree of accuracy is possible for the fundamental case of a Gaussian kernel sin
neglected terms are all exponentially small whendvess 1/+/2r At.

To complete the discretization, the integrals arising in the algorithm CG-Motion m
be evaluated. These are accurately and efficiently treated using the quadrature me
described in [23, 24]. Briefly,

e If R(t) is a square, the integration step is carried out exactly. More general regi
are treated by dividing the domain into small squares (see, e.g., Fig. 6) and summin
contributions from each. At the finest level, the contributions to the Fourier coefficients
approximated using a quadrature over triangles.

e During mesh refinement, a large number of unequally spaced function evaluation:
required (see, e.g., Fig. 6). Because the FFT requires an equally spaced grid, our it
mentations use a recent unequally spaced fast Fourier transform method [3]. This me
is also used for the rapid evaluation of the Fourier sums that arise in the quadrature ste
the algorithm.

We now consider how our proposed discretization compares with grid-based methc

4.4. Comparison to Lattice-Based Methods

There are several reasons why the algorithm CG-Motion is preferred over automata-k
discretizations of convolution-generated motion. These reasons are outlined below.

1. Alattice-based method must satisfy (5) globally, or part of the front may erroneot
remain stationary. By recursively refining near the interface and interpolating at the fil
cell level, our approach eliminates this restriction.
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2. An unwanted anisotropic component to the motion is generated whenever a reg
lattice is used since the front must travel an integer number of cells per time step. No
restriction occurs with the algorithm CG-Motion since interpolation is used to locate
front at the finest cell level. Thus, the interpolation step eliminates unwanted anisotr
and naturally allows for desired anisotropies through the use of appropriate kernels.

3. A lattice-based method produces an irregular error which makes the constructic
higher order accurate, extrapolated results impractical. Because the algorithm CG-Mc
uses interpolation to locate the front at the finest cell level, the error arising from the thre
olding step is relatively small. In many instances, this makes an accelerated converger
the limiting motion law possible using Richardson extrapolation in the time step size.
[23] for further details.

4. Far fewer operations are required to obtain an accurate representation of the
using the algorithm CG-Motion. Consider, for example, the fundamental case of diffusi
generated motion in two dimensions. Here, the proposed method requires only

1 2
(@] (E log (At))

operations per step to preserve the overall accuracy of the method [23]. This compares
favorably to the idealized finite difference result for smooth cui®gs/At3) which was
derived in [23].

The last advantage, in particular, makes it practical to determine the limiting motior
automata which are impractical to obtain using a lattice-based approach.

Consider, for example, the case=1/2 with a kernel which is the scaled characteristi
function of a square. Based on the considerations of Section 3.2, we know that a well-de
limiting motion is produced if the width of the kernel scales lie\t. For this reason, we
take our test kernel to be the scaled characteristic function for the region bounded by

r(#) = v At/max(sin(9)|, |cog6)|)

in polar coordinates.

Totestthe performance of the algorithm RegularLattice for this family of kernel functiol
we compute the area change for an initially square region (see Fig. 7) using a tinae ste
and N x 2N basis functions. Each solutioAy!, is then compared with the semi-discrete
result, A2 (i.e., the limit asN — oo with a fixed At > 0), and the continuous resul.
Based on the corresponding errors given in Table |, itis clear that the lattice-based appr
becomes impractical whenever accurate solutions are required. (The valus sélected
to be the smallest power of 2 which satisfies the constraifit — AJH < |AA — A.)

TABLE |
Errors and CPU Times for the Algorithm RegularLattice

Relative error Relative error
At N (semi-discrete) (limiting motion) CPU
1/192 128 3% 71% 34s
1/384 1024 1B% 36% 6848 s

Note.All computations reported were carried out on a 50-MHz SPARC Sun-4.
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FIG. 7. The anisotropic curvature-dependent motion of a square region over aTtim&/24. Here,
v, =k /(6 maxsirt(9), cog(9))). (a) Original region. (b) Final region.

The algorithm CG-Motion, however, obtains accurate, efficient approximations to
limiting motion. See Table Il. Even more accurate results can be obtained by increa
the number of basis functions and by using a stricter tolerance for the quadrature stey
Table 11l for a demonstration of this property for the semi-discrete problem.

Of course, the algorithm CG-Motion can also be used to obtain improved discretizat
of other well-known models which have traditionally been treated using automata.
remainder of this article will focus on models arising in two specific application are
developmental biology and excitable media.

5. APPLICATION TO DEVELOPMENTAL BIOLOGY

Cellular automata of the form (1) have arisen in a variety of disciplines in developme
biology [5]. We now focus on an interesting model of vertebrate skin patterns whict
based on local activation and inhibition [37].

5.1. The Model

Young's model for vertebrate skin patterns [37] assumes that cells are in one of
states—differentiated (colored) and undifferentiated. Each differentiated cell produces

TABLE Il
Errors and CPU Times for the Algorithm CG-Motion

Relative error Relative error
At N (semi-discrete) (limiting motion) CPU
1/192 32 4% 43% 3s
1/384 32 07% 30% 6s

1/768 32 04% 07% 12s
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TABLE 11l
Errors and CPU Times for the Algorithm CG-Motion

Relative error

At N (semi-discrete) CPU
1/192 32 4% 3s
1/192 64 006% 14s
1/192 128 1% 65s

diffusive chemicals: a short range “activator” and a longer range “inhibitor.” The activa
stimulates the differentiation of nearby undifferentiated cells and the inhibitor stimuls
nearby differentiated cells to become undifferentiated. The combined effect of these
chemicals is modeled as the weighted difference of concentrations. See Fig. 8.

To discretize this continuum model, Young uses an automaton. The initial state is g

by

o _ {1 if cell (j, k) is differentiated
K™ 1o  otherwise.

Updated states are found by spatially averaging over a circular neighborhgoaind
applying a threshold function,

1 |f Zj’,k’ENWj’qk’C?—j’,k—k' 2 0

Ciit= 6
Ik {0 otherwise, ©

whereW is a matrix derived from the weighted difference of chemical concentrations. 4
though a variety of weights produce interesting steady-state patterns [26, 37], we shall s
the particularly natural choice of settiMy equal to the difference of two Gaussians (se
Fig. 8c) [26]. Alternative choices include settillg to an approximation of the difference
of two scaled characteristic functions [37].

5.2. A Convolution-Based Discretization

The convolutional form of Young’s automaton is easily derived. Simply set

x:RY > R

R\

FIG. 8. The steady-state activator (a) and inhibitor (b) concentrations about a differentiated cell are moc
using Gaussian distributions. The inhibitor has a longer range than the activator. The combined effect (
activator and inhibitor is modeled using the difference of the two Gaussian distributions.
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equal to the characteristic function for the differentiated regirand define the updated
region,Q"", to be the set

Q"W = Ix: x * K(X) > 0}

for the kernel functionK. The kernel is not refined withAt since the time evolution of
the model is naturally discrete. (If such a refinement were carried out it would change
scaling of the final patterns and would not produce a well-defined motion law.)

Solutions to this convolution-based model are efficiently obtained using the algorit
CG-Motion. For example, the steady patterns given in Fig. 9 were obtainedMNsin28.
Note that these computations are fully resolved since further refinemeéntiéaves the
results unchanged. Automata-based solutions, however, are inefficient because inte
are poorly represented. Even using a lattice of 204848 grid points, an incorrect solution
is obtained using the algorithm RegularLattice for the dase K, — %‘K. .

Of course, the algorithm CG-Motion also efficiently (and trivially) treats more gene
kernels. Asymmetric kernels are of particular interest because they can generate st
patterns [37]. See Fig. 10 for an example.

FOCQGAA

::’/?,o\ R
[

K- 3K KIS0

: :Z‘,G l A

VO

Final State

FIG. 9. Isotropic pattern formation after 100 steps starting from a random checkerboard pattern. In ¢
case the kernel is the difference of two Gaussian distributiéhgx) = @’exp(—ZSOQxlz) and K, (X) =
1250 gy 1250)(2) ’

2 .

3
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Kanisotropic .

Initial State Final State

FIG. 10. Anisotropic pattern formation. In this case, the kernel is asymmet{gisoropidX, ¥) =
20 exp(—12502x% + y?)) — L0 exp(— L (x? + 2y?)).

3

6. APPLICATION TO EXCITABLE MEDIA

In the biological and physiological literature, the best-known examples of cellular
tomata are the excitable media [5]. We now give a brief overview of cellular automata mot
for excitable media and show that convolution-generated motion is useful for produc
improved approximations to certain features that are essential to the system.

6.1. Overview

In an excitable system, a sufficient stimulus (i.e., above some threshold value) ¢
to a large response followed by a period of recovery to a stable rest stagxckable
mediumis a spatially distributed excitable system coupled in such a way that excitat
can provoke excitation in neighboring regions. Note that these systems often experiel
recovery orefractoryperiod during which the medium is unable to be re-excited regardle
of the size of the stimulus. Examples of excitable media arise in diverse physical, chem
and biological systems, including models for nerve cells, muscle cells, cardiac funct
developmental biology, chemical reaction, and star formation. See [32, 5, 30, 34] for fur
details and references.

In early cellular automata models for excitable media, update rules were based ol
values in a neighborhood of nearest neighbors. Because this choice produces waves
propagate at a speed of one cell per time step, several serious shortcomings occur [2
The most serious of these are [31, 13]:

1. The speed of propagation does not depend on the wavefront curvature.
2. The speed of propagation does not depend on the extent of recovery of the med
3. Unwanted anisotropy is added to the front motion.

In order to include the effects of dispersibmore recent automata select threshol
values according to the recovery of the medium [13, 30, 31, 10, 8, 9, 7, 16]. Averages
large neighborhoods are used in an attempt to reduce unwanted anisotropy and to c
an approximation to the curvature component of the motion [13, 30, 31, 10, 8,9, 7,
Typically, this averaging step is carried out either directly [7, 16] (which is slow but gener:
using a number of one-dimensional convolutions [13, 30, 31, 10, 8, 9] (which is effici
but specialized), or pseudospectrally (which is efficemi general—see Section 4).

5 The dependency of wave speed on the extent of recovery of the medium is kndispasion
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Although these changes give a significant improvement over early cellular auton
models, several serious objections remain:

1. Similar to the case of convolution-generated motion (see Section 4.2), the grid spe
must be much less than the speed of propagation of the front times the time step size
Eqg. (5)) or the thresholding step may keep the front stationary. This requirement ca
especially severe for excitable media simulations in 3D since important features suc
“vortex filaments” and “scroll rings” move with speed proportional to their local curvatu
(which can be small) [29].

2. Wave fronts travel an integer number of cells per time step. Reducing these dis
tinuities to an acceptable level can require a prohibitively large number of operations
step (cf. Section 4.2). Gerhardt al. explain this effect (for their automaton) as follows
[8]: “Waves tend to travel at integer speeds ... these discontinuities in wave speed ce
be eliminated but they can be reduced by increasifigne radius of the neighborhood).
However, as increases, the number of cells per unit length must increase, so compute
time increases.”

3. Similar to the case of convolution-generated motion (see Section 4.2), an unwal
grid-based anisotropy is added to the motion.

4. In three dimensions, the simulation of “vortex filaments” is of great current int
est. Unfortunately current automata do not seem to be able to model the motion of t
structures. For example, Henze and Tyson state that in their simulations “updates i
cellular automata may be too infrequent to resolve accurately the intraperiod fluctuat
that determine net filament displacement in the local normal and binormal directions” [
Indeed, for their automaton (or others [30, 31, 10, 8, 9]), “itis hard to address this potent
paramount issue directly ... since it is impossible to change the time step independen
the other parameters” [13].

5. Often, it is of great theoretical interest to determine geometric properties define
the interface (see, e.g., [29]). Because cellular automata use a crude approximation
front (see, e.g., Fig. 1), they often produce a very poor representation of such geon
quantities. For example, Henze and Tyson [13] note that in 3D, “values of filament geom
twist, arclength derivative of twist and displacements based on cellular automata pivot
are very noisy compared with their PDE analogues.”

6. Finally, there is a possibility that certain dynamics of the media may not be captt
using automata which limit the excitation variable to only two states. Gerbtatiexplain
this effect (for their automaton) as follows [8]: “The dynamics of the core of a spiral wa
can never be fully satisfactory in our cellular automaton because we limit the excita
variable to two states only. Thus, we can never describe subtle differences in the excit
variable, such as those present in the core of a spiral wave where criss crossing concen
gradients seem to be important.”

As we shall see in the next section, many of these objections are simply artifacts of u
a lattice-based model and thus are naturally eliminated using convolution-based meth

6.2. A Convolution-Based Model

Convolution-generated motion naturally eliminates many of the objections founc
automata-based models for excitable media. Furthermore, it is typically straightforw
to derive the convolutional form based on an automata model.
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\ g(u,v)=0

Test state \ f(u,v)=0

u

FIG. 11. Typical phase plane diagram for an excitable medium. The local kinetics of the excitation vari
u and the recovery variableare determined by the nullclines of the systerh&i, v) =0 andg(u, v) =0. Small
perturbations from the unique rest state are damped out, while large perturbations cause the system to unc
large excursion before returning to the rest state.

Consider, for example, the excitable automata introduced in Gerbasadt[10, 8, 9],
Weimaret al.[30, 31], and Henze and Tyson [13]. In these automata, update rules are chi
to mimic the dynamics of a two-variable system of reaction—diffusion equations,

u 1
— = Zf(u,v) + D,V
ot €

o (u, v) + D, V?
= , U v v,
ot 9

where f (u, v) andg(u, v) specify the local kinetics of the system (see Fig. 11). Note th
the scalawu (the excitation variable) changes on a time scale which is much faster than
scalaw (the recovery variable). To derive the corresponding automaton model, the react
diffusion system is “split” in a non-convergent way into four steps which are carried «
sequentially (see the Appendix for details):

1. The excitation variable is diffused.

2. The diffused excitation variable is thresholded to 0 (resting) or 1 (excited) accorc
to the value of the recovery variable, i.e = A(v).

3. The recovery variable is evolved according to the local kinetics.

4. The result from Step 3 is diffused to give the updated recovery variable.

Finally, the discretization is completed by representirgndv by their pointwise values
on a regular lattice.

The advantages of this automaton over earlier models are clear. Since large neigl
hoods are used, the motion of the wave front will exhibit fewer grid effects (i.e., reduc
anisotropy) and will have an improved dependence on curvature. Furthermore, dispe
is included in the model since thresholding is carried out according to the value of
recovery variable. Indeed, simulation results reported for FitzHugh-Nagumo kinetics |
and the Oregonator model [31] agree well with PDE simulations for the period, wavelen
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and meander patterhef spiral waves for a wide range of parameters. When comparec
PDE simulations, the automata model has the practical advantage that it ignores the d
of the fast kinetics so that “the time step in the cellular automaton can exceed that in |
simulations by 1 or 2 orders of magnitude” [13].

Unfortunately, a variety of serious objections arise whenever a lattice-based spatial
cretization is used. As discussed in the previous section, discontinuities in the motion
unwanted anisotropy occur because the front travels an integer number of cells per
step. A prohibitively fine mesh may be required in order to resolve the motion of import
features such as vortex filaments. Also, geometric quantities defined on the interfac
often impractical to estimate using an automaton because a very crude representat
the front is used. Finally, we would like to be able to refine the time step independer
other parameters in order to optimize the discretization and to determine the strength:
limitations of the model. Unfortunately, this type of refinement is impossible whenever
averaging step is carried out using the one-dimensional convolutions proposed in [13
31,10, 8, 9].

Similar to the case of convolution-generated motion, we want to avoid discretizati
which use a pointwise thresholding because this type of thresholding displaces the fr
distance which is comparable to the mesh spacing. Fortunately, an improved discretizat
easily obtained. Steps 1 and 2 above are trivially treated using the algorithm CG-Motion.
evolution of the recovery variable is similar, except that we must use Gaussian quadr:
rather than exact integration to evaluate the Fourier coefficients.

Similar to automata-based discretizations, this convolution-generated approach al
for very large time steps (relative to PDE simulations) since it ignores the details of
fast dynamic<. Relative to automata-based discretizations, however, it is clear that
approach gives a much more accurate treatment of the front since it recursively refines
the interface and interpolates at the finest cell level. This allows for accurate estimat
quantities defined on the interface and even captures the motion of features which de
on curvature. Furthermore, discontinuities and unwanted anisotropy in the front mo
are eliminated since interpolation is used to locate the front at the finest cell level. Fin:
our proposed discretization has the benefit thiatan be selected independently of othe
parameters, unlike the methods proposed in [13, 30, 31, 10, 8, 9].

We now give a number of numerical experiments which were derived using our propc
discretization. More detailed studies will be the focus of a future report.

6.3. Numerical Experiments

We now apply our algorithms to the problem of simulating an excitable medium. |
simplicity, we consider the convolution-based model that corresponds to Barkley’s Ic
kinetics [1],

f(u,v) =u@ —wd - un)
g(u,v) =u-—uv,
whereuy (v) = (v — a)/b anda andb are parameters. (See the Appendix for full details.
6 Themeander patteriis the path traced out by the tip of a spiral wave. See [34] for further details.

7 Since the details of the fast dynamics are ignored, this approach may be inadequate for modeling the dyn
of the spiral core in certain problems (see previous section).
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a b

1 1
0.9r q 0.9
0.8 4 08
0.7+ 1 o7
0.6F b 0.6
0.5F 4 05
0.4} {1 04
0.3F E 0.3
0.2F 1 0.2
0.1 1 0.1

00 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1

FIG.12. Anisolated spiral wave. This simulation used Barkley’s dynamics a#0.3, b= 0.01, ¢ = 0.005,
andD, = 0.000625= D,. The discretization parameters weMe= 64 andAt =1/16.

If we apply the algorithm CG-Motion to this model, a variety of interesting spiral wav
are obtained. Figure 12, for example, gives an isolated spiral produced by this model. N
that the wave front is smooth and isotropic, even though onlyx1288 basis functions
are used. (Lattice-based discretizations for similar spirals exhibit considerable grid-b
anisotropy. See, e.g., Fig. 5 of [31].) Figure 13 demonstrates that colliding spirals
be generated using the same model with different initial conditions. Note that all sh
changes are handled naturally by the method—no special treatment of topological mer:
or breakings is needed.

Of course, non-Gaussian kernels may also be used in the convolution step to pro
spiral waves with a desired anisotropy. The use of such asymmetric kernels will be cor
ered as part of a future report.

7. CONCLUSION

In this work, we have presented convolution-generated motion both as a means fo
scribing the limiting pattern dynamics of a class of cellular automata models and a:
independent, alternative foundation for expressing pattern producing models.

Conceptually, convolution-generated motion can be thought of as a class of mo
intermediate between cellular automata and continuum PDEs, in that it eliminates the
scales of automata on the one hand, but it naturally describes perfect interfaces, whic
often obtained as singular limits of reaction—diffusion/Ginzburg—Landau type PDEs, at
other extreme. Thus it simultaneously achieves the long length scale limit of automata
the short length scale limit of reaction—diffusion PDEs, both of which are difficult limits
analyze theoretically or simulate numerically. Convolution-generated motion also me
accessible a large class of motions that cannot be conveniently described or approxir
by traditional PDE or automata methods.

From a computational standpoint, convolution-generated motion is easy to implen
since convolutions can be carried out as multiplications in Fourier space and threst
ing can be carried out using a simple quadrature. These methods are also efficien
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FIG. 13. Excitation variable for two interacting spiral waves. All parameters are set according to Fig. 12
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accurate because they can be implemented using adaptively refined grids with fast Fc
transform methods. These properties lead to a variety of practical advantages. In partit
these methods do not exhibit unwanted anisotropy and they capture curvature-depe
motions that are impractical to study using automata-based discretizations. Furtherr
convolution-based discretizations are much faster (e.g., 1000 times faster) when acc
solutions are required. In addition, convolution-based algorithms produce smooth ir
faces, thus allowing geometric quantities such as the interface normal and curvature
accurately evaluated. Motion parameters suchtare easily varied independent of othel
parameters in the model, as well.

Theoretically, convolution-generated motion has the desirable property that it is 0
straightforward to derive the limiting motion laws for smooth interfaces [24]. Furthermo
rigorous derivations of limiting motion laws have been obtained for an interesting vari
of convolution kernels and threshold values [15].

Based on these computational and theoretical advantages as well as our studies of n
arising in developmental biology and excitable media, we believe that convolution-gener
motion represents a useful, novel approach for modeling natural phenomena.

In future work, we shall carry out a detailed comparison of the convolution-based mc
for excitable media with its reaction—diffusion PDE counterpart. In particular, it will be
great interest to compare the motion of vortex filaments in three dimensions with asy
totically derived motion law [29] and with PDE simulations. Also, we plan a general inve
tigation of the connection between convolution-generated motion and interface dynal
described by the singular limit of reaction—diffusion/Ginzburg—Landau PDEs, similar to
investigation of its connection with automata carried out in this paper.

APPENDIX

A Convolution-Based Model for Excitable Media

Gerhardtet al. [10, 8, 9], Weimatret al. [30, 31], and Henze and Tyson [13] devised ¢
convolution-based model for excitable media which mimics the dynamics of a two-varic
system of reaction—diffusion equations,

ou 1

— = Zf(u,v) + D,V
at €

9 _ U, v) + D, V2
— = v +Veu.
ot gty

A variety of reaction dynamics may be simulated using their model [31, 13]. For simplic
this section considers the special case of Barkley’s local kinetics [1] (see Fig. 14),

f(u,v) =u@—uw(l —un))

g(u,v) =u—v,

whereuy(v) = (v — a)/b anda andb are parameters.

For these kinetics, the convolution-based approach derives estimatesdi at time
t + At from the values at timeby “splitting” the reaction—diffusion system into four parts.
Each of these parts is treated sequentially as follows:
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9&( state 1T u

FIG. 14. Phase plane diagram for Barkley’s local dynamics. Here, the nulicline fthe linev =u, and
the nullcline forv consists of three linest= 0, u = ug, (v) andu=1.

1. Evaluate the convolution af(t) with the heat kernel,
u= u(t) % KDU»

where

Kp, (X) = ! ex ! Ix|?
D)= 2 Doat P\ TaD, At '

2. Thresholdi by setting

S_[1 iU
“10 otherwise.

The threshold value, (v), can be determined by demanding that the dependence of w
speed on the state of recovery match that of the PDE [13]. For Barkley’s dynamics,
speed of a planar wave can be derived analytically [28],

/ Dy
c(v) = (1 — 2ups(v)) o

To preserve this relationship between wave speed and recovery, it is easy to show (|
the 1D analytical solution to the heat equation) that

1 1 [ At
Av) = 5 5erf<c(v) D_>

3. Evolve the excitation and recovery variables according to the local dynamics fi
time At. Specifically,
(a) Find the solution ofi; = g(u, v) at timet + At starting fromv(t) = v(t).
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(b) If v(t + At) > vmax then the excitation variable changes in the interval and v
must:
¢ Find the time when the excitation variable changes; i.e., tffrgb thatv(t*) =
UMAX -
e Setu=0.
o Find the solution of; = g(0, v) at timet + At starting fromv(t*) = vmax .
(c) Update the excitation variabla(t + At) =u.
4. Evaluate the convolution af with the heat kernel to obtain the updated value of th
recovery variable,

v(t+ At)=v* Kp,

where

Kp, (X) = = ex = |2
0.0 = b, at P\ "ap, At )

Note that Step 1 simply evolves the excitation variable according to the heat equa
Steps 2 and 3 update each variable according to the local dynamics. Finally, Step 4 ev
the recovery variable according to the heat equation.
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