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Cellular automata have been used to model the formation and dynamics of pat-
terns in a variety of chemical, biological, and ecological systems. However, for
patterns in which sharp interfaces form and propagate, automata simulations can ex-
hibit undesirable properties, including spurious anisotropy and poor representation
of interface curvature effects. These simulations are also prohibitively slow when
high accuracy is required, even in two dimensions. Also, the highly discrete nature
of automata models makes theoretical analysis difficult. In this paper, we present a
method for generating interface motions that is similar to the threshold dynamics
type cellular automata, but based on continuous convolutions rather than discrete
sums. These convolution-generated motions naturally achieve the fine-grid limit of
the corresponding automata, and they are also well suited to numerical and theoretical
analysis. Because of this, the desired pattern dynamics can be computed accurately
and efficiently using adaptive resolution and fast Fourier transform techniques, and
for a large class of convolutions the limiting interface motion laws can be derived
analytically. Thus convolution-generated motion provides a numerically and analyt-
ically tractable link between cellular automata models and the smooth features of
pattern dynamics. This is useful both as a means of describing the continuum lim-
its of automata and as an independent foundation for expressing models for pattern
dynamics. In this latter role, it also has a number of benefits over the traditional
reaction–diffusion/Ginzburg–Landau continuum PDE models of pattern formation,
which yield true moving interfaces only as singular limits. We illustrate the power
of this approach with convolution-generated motion models for pattern dynamics in
developmental biology and excitable media.c© 1999 Academic Press
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1. INTRODUCTION

There are many natural and industrial problems in which sharp interfaces form and
propagate. Notable examples include the growth of crystalline materials, the processing and
enhancement of images, the evolution of ecological systems, and the waves of excitation
that occur in heart and neural tissue.

To model these and other complex phenomena, a wide variety of cellular automata have
been used [5, 12, 27, 36]. A particularly fundamental class is the threshold dynamics type
discussed in Section 2. Briefly, in these models, the spatial domain is divided into a fixed
lattice and each lattice point is assigned one of a finite number of states. The state of each
cell is updated by forming a weighted sum over a neighborhood and thresholding in some
fashion.

Unfortunately, several difficulties arise when these models are used as the basis for
numerical simulations. As we shall see, these automata give a crude approximation of the
front and a discontinuous approximation to the motion. This leads to a number of qualitative
problems, including an inadequate treatment (or complete absence) of curvature effects and
unwanted anisotropies. Automata-based discretizations also have the disadvantages that
they may not give a practical means for evaluating quantities defined on the interface or for
independently varying parameters defined in the model. Furthermore, whenever accurate
approximations of the limiting motion are sought, these simple lattice-based techniques
become prohibitively slow, even for simple problems in two dimensions.

In this present work, we consider threshold dynamics type schemes which are based
on convolutions rather than discrete sums. These convolution-generated motions naturally
give the limiting form of automata as the mesh spacing goes to zero and can be discretized
efficiently and accurately using adaptive grid refinement with fast Fourier transforms. These
methods are particularly well suited to modeling continua because they accurately approx-
imate the continuum limit (in space) and thus eliminate the qualitative grid effects that
are problematic in automata-based discretizations. Numerical experiments for convolution-
based models arising in developmental biology and excitable media are used to validate the
performance of our methods.

The outline of the paper follows. Section 2 reviews threshold dynamics models for inter-
face motion. In Section 3, we review convolution-generated motion and give an overview
of the class of obtainable motion laws. Section 4 discusses the numerical approximation of
convolution-generated motion and shows that discretizations based on fast Fourier trans-
forms on adaptively refined grids are faster and more accurate than direct or pseudospectral
approximations. In Section 5, we apply our proposed discretization to a model arising in de-
velopmental biology and compare our results to those from the usual automaton. Section 6
applies our proposed discretization to a convolution-based model for excitable media and
compares the result to automata-based methods. This also indicates the computational ad-
vantages of convolution-generated motion over reaction–diffusion/Ginzburg–Landau PDE
models for pattern dynamics. In Section 7, we summarize our results and outline current
research. Finally, the Appendix concludes with a specification of the convolution-based
model for excitable media that was used in Section 6.
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2. CELLULAR AUTOMATA MODELS

Cellular automata are discrete dynamical systems. They consist of a lattice of sites, each
of which may take on a finite number of “states,” or values. The site values evolve in
synchronous, discrete time steps according to an evolution rule that specifies the updated
value in terms of the current values at neighboring sites [35].

We will focus on a particularly important class of automata and discuss some of their
limitations as a modeling and simulation tool.

2.1. Threshold Dynamics

An important class of automata can be obtained by imagining each neighbor’s contribution
to be a simple “vote” for or against a certain outcome; any number of affirmative votes above
a certain threshold will yield that outcome. For example, consider the voting automaton
displayed in Fig. 1. Here, there are two states, 1 and 0. A sum of the cell’s own vote and
that of its eight nearest neighbors is formed (see Fig. 1b). Where this sum is greater than or
equal to the threshold value (which in this case is 3) the cell is assigned state 1, and state
0 elsewhere. By denoting the state of cell( j, k) at time stepn by Cn

jk , we obtain a simple

FIG. 1. One step of a simple automaton consists of summing over the nearest neighbors and thresholding. In
this example, we sum over a nine-point neighborhood and take the updated set to be all points which have a sum
of 3 or more. (a) Original region. (b) Sum of neighbors. (c) Final region.
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analytic representation for the automata model,

Cn+1
jk =

{
1 if

∑
−1≤ j ′,k′≤1 Cn

j− j ′,k−k′ ≥ λ
0 otherwise,

whereλ represents the threshold value.
More generally, each vote can be assigned some weight. LettingN⊂ Z2 be the neigh-

borhood of interest andW be the matrix of weights, we obtain the update rule for threshold
dynamics,

Cn+1
jk =

{
1 if

∑
j ′,k′∈N Wj ′,k′Cn

j− j ′,k−k′ ≥ λ
0 otherwise.

(1)

2.2. Threshold Dynamics as a Method for Interface Motion

In order to model a desired front motion using the update rule (1), an appropriate neigh-
borhood and weight values must be chosen.

In early cellular automata, a neighborhood of nearest neighbors was selected. This choice
has the advantages of speed and simplicity but is inadequate for modeling many interesting
natural phenomena. In particular, rules which use these small neighborhoods are unable to
model the effects of curvature on the speed of propagation [13, 33]. These simple automata
also add grid-based anisotropy to the front motion [25]. This effect is easily seen for a 2D
regular lattice since a front oriented at 45◦ from the horizontal travels at

√
2 times the speed

of a vertical or horizontal front.
In an attempt to reduce grid effects and to obtain an approximation to the curvature

contribution of the motion, several authors have considered refining the lattice and taking
larger neighborhoods [11, 13, 30, 31, 10, 8, 9, 7, 16]. In carrying out this procedure, several
interesting questions arise. In particular:

1. What is the limiting motion of the automata model as the mesh is refined and the
neighborhoods increased?

2. How well does a particular automaton approximate its continuum limit? In particular,
how much refinement is required to faithfully reproduce curvature effects and to eliminate
unwanted grid effects?

3. If it is impractical to approximate the limiting motion using an automaton, how should
the limiting motion be computed?

We now review recent results which provide a partial answer to the first of these questions.
Answers to the remaining questions will be the focus of the remainder of the paper.

3. CONVOLUTION-GENERATED MOTION

The procedure of forming a weighted sum over some neighborhood, followed by thres-
holding at some value, is reminiscent of convolution-generated motion [24]. This is a
procedure for defining a time-discrete evolution of an interface that is the boundary of a
region, as follows: Given an initial regionÄ in Rd, let

χ : Rd → R
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be the characteristic function ofÄ, i.e.,

χ(x) =
{

1 if x ∈ Ä
0 otherwise.

We define the updated regionÄnew to be the set

Änew= {x:χ ∗ K (x) > λ}

for some threshold valueλ∈ R and some convolution kernel function,K : Rd→ R, where
∗ denotes the convolution

χ ∗ K (x) =
∫

Rd

K (x− y)χ(y) dy.

Or, in terms of characteristic functions, we define the updated characteristic functionχnew(x)
by

χnew(x) =
{

1 if χ ∗ K (x) > λ

0 if χ ∗ K (x) ≤ λ.

Convolution-generated motion can be used to produce a great variety of interface motions,
which are amenable to both theoretical analysis and computation. On the theoretical side,
the resulting analytic velocity of the interface (in the proper continuous time limit) can
be obtained explicitly for a large class of convolution kernels, and general convolution-
generated motions can also be described in terms of a geometric Huygens’ principle. On
the computational side, accurate and efficient discretizations can be designed for computing
convolution-generated motions. These aspects of the method are described in more detail
in the following sections.

First, we recall a special case of convolution-generated motion which produces a classical
“motion by mean curvature.” This simple algorithm highlights the elegance and power of the
convolution formulation. Also, the discovery and investigation of this particular algorithm
was our original motivation for considering convolutions as a means of generating interface
motion.

3.1. Diffusion-Generated Motion by Mean Curvature

A particularly simple convolution-based algorithm exists for moving an interface with
a normal speed equal to its mean curvature [18, 19]. If the initial region has characteristic
functionχ , the updated region at a time1t is{

x:χ ∗ K (x) >
1

2

}
, (2)

whereK is a Gaussian of width
√
1t ,

K (x) = 1

4π1t
exp

(
− 1

41t
|x|2
)
.

“Diffusion-generated” refers to the fact that convolution with the Gaussian kernel can
be realized by solving the diffusion equation for a time1t , with χ as initial data. Thus
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this procedure can be described informally as diffusing the set for a short time, and then
thresholding at the12 level to obtain a new set. It is intuitively clear that such a diffusion
will cause a curvature-dependent blurring of the set boundary, and a formal analysis of
the diffusion equation [17–19] shows that this should result in precisely motion by mean
curvature. Indeed, a variety of rigorous proofs have been given to show that this simple
algorithm converges to motion by mean curvature in any number of dimensions as the time
step size goes to zero [6, 2, 15]. Note also that this procedure has a direct extension to the
motion of multiple regions, i.e., interfaces which intersect to form triple points or other
multiple junctions. See [18, 17, 19, 22] for details.

Any positive, radially symmetric kernel may be used in place of the Gaussian to obtain
a convolution-generated mean curvature motion, as was pointed out in [18] and proven
rigorously in [14]. For example, in two dimensions we can takeK to be the (normalized)
characteristic function for a disc of radiusr , centered at the origin,

K (x) =
{ 1
πr 2 if |x| < r

0 otherwise,
(3)

wherer ∼ √1t .

3.2. General Convolution-Generated Motion

Based on the update rule (1), it is clear that we are interested in more general forms of
convolution-generated motion. In particular, it is natural to consider the following general-
izations of (2):

1. Allow different convolution kernel functions,K . The method formally allows arbitrary
kernel functions, and asymmetrical kernels can be used to produce anisotropic motion laws,
as originally suggested in [18]. Without loss of generality, we shall assume that the kernel
has been normalized to satisfy

∫
K (x) dx= 1.

2. Allow a general threshold,λ, in {x: χ ∗ K (x)>λ}. This provides a continuum of
convolution-generated methods parameterized byλ∈ [0, 1) with λ= 0 corresponding to
the standard Huygens’ principle for constant motion (see [24]), andλ= 1

2 corresponding to
motion by mean curvature. In general,λ can also be allowed to depend on other quantities.
For example, a variety ofvn=a+ bκ diffusion-generated motions can be obtained with
λ= 1

2 + c
√
1t [15, 17, 22], soλ= λ(1t) is a useful form. More generally,λmay be selected

locally as a function of the normal direction defined by the level sets ofK ∗ χ to achieve
an interesting variety of anisotropic motions [24].

These generalizations produce a semi-discrete version of threshold dynamics—i.e., con-
tinuous in space but discrete in “time.” To obtain an approximation of the continuous
dynamics (assuming such a limit exists), we must somehow introduce a time step and clar-
ify what it means to take the small time step limit. Intuitively, the effective time step is
determined by the size of the support ofK , since the larger the support ofK , the further
its convolution will move the set boundary. Thus the small time step limit is obtained by
scaling down the support ofK in a suitable fashion. More precisely, let us scale the fixed
kernelK (x) by the mass preserving formK (x/r )/r d, so that the typical radius of its support
scales liker ¿ 1. By convolving this scaled kernel withχ and thresholding the result atλ,
the set boundary is displaced by an amount that is some function ofr , s(r ). If we demand
that in the limit of smallr this displacement be one time step of some limiting motion
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FIG. 2. WhenK is non-negative andλ= 0, Huygens’ principle for constant motion is produced.

law, s(r )= vn1t , this fixes the relation between the size of the kernel,r , and the effective
time step,1t . Note, in particular, that ifK is a Gaussian kernel with support of sizer , this
general procedure yields1t ∼ r 2. This is precisely the scaling relation between kernel size
and time step used in the diffusion-generated case discussed above, although there it can
also be motivated by the simple fact that diffusion for a time1t will smear (and thus move)
the set boundary over a distancer ∼√1t .

3.3. Obtainable Motion Laws

It is natural to ask what motion laws arise from convolution-generated motion and how
the radius of the kernel scales with1t .

In the case whereK is non-negative andλ= 0, convolution-generated motion reduces to
Huygens’ principle for “constant motion.” Specifically, the updated set is givenexactlyas
follows (see Fig. 2):

SetN equal to the shape consisting of all points whereK is non-zero. Using only
translations, place copies ofN so that its origin is positioned at the boundary of
the initial set. The forward envelope of shapes forms the boundary of the updated
set.

If we assume that each update corresponds to one time step of length1t , thenN and hence
K have radii which scale like1t .

Another interesting case occurs in two dimensions whenλ= 1/2 andK is the scaled
characteristic function of a symmetric regionN (i.e.,N =−N ). If we definer (θ) to be
the polar representation of the boundary ofN , then it is easy to show that a leading order
approximation of the displacement of a smooth initial boundary isr 2(θ)κ/6 [24]. Thus
general “anisotropic curvature motions” of the form

vn = b(θ)κ (4)

are obtained simply by taking

r (θ) =
√

6b(θ)1t .
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FIG. 3. WhenN is symmetric andλ= 1/2, a geometric algorithm for anisotropic curvature motion is pro-
duced by placing shapes 1/2 inside the original region by area. The boundary of the updated region is given by the
locus of shape centers.

Similar to the case of constant motion, this algorithm also has a simple geometric version
[24] (see Fig. 3):

Using only translations, place copies ofN so that exactly half of their area lies
inside the original region. The locus of shape centers forms the boundary of the
updated set.

A combination of these two types of motion can be obtained by varying the threshold,
λ. This class of methods has been studied in the recent and comprehensive work of Ishii,
et al. [15] for the case whereλ is a constant orλ= λ(1t). They give explicit formulas for
the limiting surface normal velocityvn in terms of various moments of the kernel function,
in any number of dimensions. Moreover, they also give rigorous proof that the convolution-
generated motions converge to their statedvn motion laws in the limit as1t→ 0.

To produce more general motions,λ may be allowed to depend on other quantities. For
example, in [24]λ is defined locally as a function of the normal direction to obtain motions
of the form

vn=a(θ)+ b(θ)κ,

whereb is non-negative and continuous. Nonlocal choices forλ also produce interesting
flows. For example, volume preserving motion by mean curvature [4, 20], i.e.,vn= κ − κ̄,
whereκ̄ is the surface average of the mean curvature, is realized by selecting the level that
encloses the same volume as the original set in diffusion-generated motion, instead of the
1
2 level [21]. Convergence of these last two procedures has been demonstrated numerically,
but not proven analytically.

4. NUMERICAL APPROXIMATION

We now discuss the numerical approximation of convolution-generated motion. For illus-
trative purposes, our examples will focus on the fundamental, but simple, case of anisotropic
curvature-dependent motion (4). Subsequent sections will build upon these results to ap-
proximate models arising in developmental biology and excitable media.
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4.1. Overview

Perhaps the most obvious method for approximating convolution-generated motion is
with threshold dynamics. If small neighborhoods are used, however, these automata can-
not model the effects of curvature on the speed of propagation. They also add unwanted
anisotropy to the front motion. Thus, large neighborhoods typically must be used if even a
qualitative agreement with the model is sought.

Since large neighborhoods are inefficient to treat using a direct evaluation of the automata
rule (1), it is natural to evaluate the sum pseudospectrally. Alternatively, the summation step
may be approximated by a number of one-dimensional convolutions [13, 30, 31, 10, 8, 9].
This approach is rather limited, however, because it accommodates only a very small class
of sums.

4.2. Pseudospectral Approximation

An obvious way of approximating convolution-generated motion is with a regular lattice
of grid points,{x jk}. Using this approach, functions are represented by their values at grid
points. This makes the thresholding step trivial since it can be carried out pointwise. The
convolution step is also straightforward since it reduces to a summation (1) which can be
treated efficiently in Fourier space using fast Fourier transform (FFT) methods.

Thus a simple (but naive) discretization for convolution-generated motion is as follows:

ALGORITHM RegularLattice.

GIVEN: A kernel,K , an initial region,R, and a regular lattice of points,{x jk}.
BEGIN

(1) SetCjk =
{

1 if x jk ∈ R

0 otherwise
(2) Set [K̂ jk ] equal to the discrete Fourier transform of [K (x jk)].
(3) REPEAT for all steps:

BEGIN
(a) Set [Ĉjk ] equal to the discrete Fourier transform of [Cjk ].
(b) Convolve by replacing eacĥCjk with Ĉjk K̂ jk .
(c) Set [Cjk ] equal to the inverse Fourier transform of [Ĉjk ].

(d) Threshold eachCjk by settingCjk =
{

1 if Cjk > λ

0 otherwise.
END

END

Unfortunately, the algorithm RegularLattice as well as other grid-based techniques [13,
30, 31, 10, 8, 9, 7,16] have several deficiencies. These include:

1. The convolution step must propagate the level setλ at least one grid point, otherwise
the thresholding step will keep the front stationary [19]. Thus, the grid spacing must be
much less than the speed of propagation of the front times the time step size:

1x¿ vn1t. (5)

Note that this requirement can be especially severe for the fundamental case of curvature
motion since it applies even if the local curvature of the interface is small. See Fig. 4 for an
illustration of a shape which has “frozen” in place because the mesh spacing is too large.
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FIG. 4. The motion cannot be resolved by the algorithm RegularLattice and the interface remains stationary.
Here, diffusion-generated motion is used with a time step of1t = 0.001 and a mesh spacing of1x= 1/54.

2. The underlying lattice will contribute an unwanted anisotropy to the motion since the
front must travel an integer number of cells per time step in the local normal direction. This
grid-based anisotropy is often apparent even when large neighborhoods are used (see, e.g.,
Fig. 5 of [31]). To reduce these effects, Markus and Hess [16] considered a randomized
lattice. Unfortunately, this approach does not provide a means of generating a desired
anisotropy. It also has the disadvantage that the summation step is carried out directly, since
simple transform methods cannot be used on an irregular lattice. See [25] for a study of
randomized rules for reducing grid-based anisotropy.

3. In many convolution-based algorithms, Richardson extrapolation in the time step size
can be used to obtain an accelerated convergence to the limiting motion law [23]. Using a

FIG. 5. An automata representation of the original region,R, using a uniform mesh. (a) Original region.
(b) CA representation.
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lattice-based discretization, however, the front must travel an integer number of cells per
time step. Thus, very small differences in the level setλ can produce jumps (of size1x) in
the front location after thresholding. This type of irregular error is undesirable because it
makes the construction of higher order accurate, extrapolated results impractical [23].

4. A further difficulty with the lattice-based approach is that each thresholding step
produces anO(1x) displacement in the front position (see, e.g., Fig. 5). To reduce this
error to an acceptable level often necessitates a prohibitively large number of grid points
whenever an accurate representation of the limiting motion is desired. For example, consider
a diffusion-generated approximation to curvature motion. Here, each step of the algorithm
produces anO(1t2) error in the position of the front [21]. To preserve this overall accuracy,
grid points must be a distanceO(1t2) apart since each thresholding step produces an error
which is comparable to the mesh spacing. Thus,Ä(1/1t4) grid points4 (andÄ(1/1t4)

operations per step) are required whenever a uniform mesh is used. Even with a banded
method,Ä(1/1t3) operations per step are needed [23], which can be impractical when
accurate results are sought.

In many problems, these limitations can be overcome by using discretizations based on
fast Fourier transforms on adaptively refined grids [23]. A discussion of these methods
follows.

4.3. Convolution-Generated Motion Algorithm

As we saw in the previous section, a pointwise thresholding displaces the front a distance
which is comparable to the mesh spacing. To eliminate this effect, and to obtain a more
efficient computation, an improved approximation to the thresholding step must be derived.

It is easily seen that the Fourier coefficients of the characteristic function for a regionR
are givenexactlyby

χ̂ jk =
∫ ∫

R
exp(−2π i j x ) exp(−2π iky) d A

for integersj andk. Using approximations of these integrals to derive the Fourier coefficients
gives a greatly improved discretization of convolution-generated motion [23, 24]:

ALGORITHM CG-Motion.

GIVEN: A kernel,K , and an initial region,R.
BEGIN

(1) Setχ̂ jk =
∫ ∫

R exp(−2π i j x ) exp(−2π iky) d A,−N ≤ j, k ≤ N.
(2) SetK̂ jk =

∫ ∫
K (x, y) exp(−2π i j x ) exp(−2π iky) d A,−N ≤ j, k ≤ N.

(3) REPEAT for all steps:
BEGIN
(a) Convolve by replacing each ˆχ jk with χ̂ jk K̂ jk .
(b) Threshold by setting ˆχ jk=

∫∫
R(t)exp(−2π i j x )exp(−2π iky)d A,−N≤ j, k≤N,

whereR(t) = {(x, y) :
∑
−N≤ j,k≤N χ̂ jk exp(−2π i j x ) exp(−2π iky)≥ λ}.

END
END

4F(n)=Ä( f (n)) if there exist positive constantsc andn0 such thatF(n)≥ c f (n) whenevern≥ n0.
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FIG. 6. Integration is carried out by dividing the domain into squares. Contributions from all but the finest
regions can be evaluated exactly.

Note that the convolution step acts as a filter, removing high-frequency components. Since
this convolution step is linear, the different Fourier modes do not interact and there is
never a need to treat the highest frequency components. Thus, an excellent approximation
is obtained using fewer Fourier modes than might otherwise be expected. Indeed, a very
high degree of accuracy is possible for the fundamental case of a Gaussian kernel since the
neglected terms are all exponentially small wheneverNÀ 1/

√
2π1t .

To complete the discretization, the integrals arising in the algorithm CG-Motion must
be evaluated. These are accurately and efficiently treated using the quadrature methods
described in [23, 24]. Briefly,

• If R(t) is a square, the integration step is carried out exactly. More general regions
are treated by dividing the domain into small squares (see, e.g., Fig. 6) and summing the
contributions from each. At the finest level, the contributions to the Fourier coefficients are
approximated using a quadrature over triangles.
• During mesh refinement, a large number of unequally spaced function evaluations are

required (see, e.g., Fig. 6). Because the FFT requires an equally spaced grid, our imple-
mentations use a recent unequally spaced fast Fourier transform method [3]. This method
is also used for the rapid evaluation of the Fourier sums that arise in the quadrature steps of
the algorithm.

We now consider how our proposed discretization compares with grid-based methods.

4.4. Comparison to Lattice-Based Methods

There are several reasons why the algorithm CG-Motion is preferred over automata-based
discretizations of convolution-generated motion. These reasons are outlined below.

1. A lattice-based method must satisfy (5) globally, or part of the front may erroneously
remain stationary. By recursively refining near the interface and interpolating at the finest
cell level, our approach eliminates this restriction.



848 RUUTH, MERRIMAN, AND OSHER

2. An unwanted anisotropic component to the motion is generated whenever a regular
lattice is used since the front must travel an integer number of cells per time step. No such
restriction occurs with the algorithm CG-Motion since interpolation is used to locate the
front at the finest cell level. Thus, the interpolation step eliminates unwanted anisotropy
and naturally allows for desired anisotropies through the use of appropriate kernels.

3. A lattice-based method produces an irregular error which makes the construction of
higher order accurate, extrapolated results impractical. Because the algorithm CG-Motion
uses interpolation to locate the front at the finest cell level, the error arising from the thresh-
olding step is relatively small. In many instances, this makes an accelerated convergence to
the limiting motion law possible using Richardson extrapolation in the time step size. See
[23] for further details.

4. Far fewer operations are required to obtain an accurate representation of the front
using the algorithm CG-Motion. Consider, for example, the fundamental case of diffusion-
generated motion in two dimensions. Here, the proposed method requires only

O

(
1

1t
log2(1t)

)
operations per step to preserve the overall accuracy of the method [23]. This compares very
favorably to the idealized finite difference result for smooth curvesO(1/1t3) which was
derived in [23].

The last advantage, in particular, makes it practical to determine the limiting motion of
automata which are impractical to obtain using a lattice-based approach.

Consider, for example, the caseλ= 1/2 with a kernel which is the scaled characteristic
function of a square. Based on the considerations of Section 3.2, we know that a well-defined
limiting motion is produced if the width of the kernel scales like

√
1t . For this reason, we

take our test kernel to be the scaled characteristic function for the region bounded by

r (θ) =
√
1t/max(|sin(θ)|, |cos(θ)|)

in polar coordinates.
To test the performance of the algorithm RegularLattice for this family of kernel functions,

we compute the area change for an initially square region (see Fig. 7) using a time step1t
and 2N× 2N basis functions. Each solution,A1t

N , is then compared with the semi-discrete
result, A1t (i.e., the limit asN→∞ with a fixed1t > 0), and the continuous result,A.
Based on the corresponding errors given in Table I, it is clear that the lattice-based approach
becomes impractical whenever accurate solutions are required. (The value ofN is selected
to be the smallest power of 2 which satisfies the constraint|A1t − A1t

N | ≤ |A1t − A|.)

TABLE I

Errors and CPU Times for the Algorithm RegularLattice

Relative error Relative error
1t N (semi-discrete) (limiting motion) CPU

1/192 128 3.1% 7.1% 34 s
1/384 1024 1.3% 3.6% 6848 s

Note.All computations reported were carried out on a 50-MHz SPARC Sun-4.
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FIG. 7. The anisotropic curvature-dependent motion of a square region over a timeT = 1/24. Here,
vn= κ/(6 max(sin2(θ), cos2(θ))). (a) Original region. (b) Final region.

The algorithm CG-Motion, however, obtains accurate, efficient approximations to the
limiting motion. See Table II. Even more accurate results can be obtained by increasing
the number of basis functions and by using a stricter tolerance for the quadrature step. See
Table III for a demonstration of this property for the semi-discrete problem.

Of course, the algorithm CG-Motion can also be used to obtain improved discretizations
of other well-known models which have traditionally been treated using automata. The
remainder of this article will focus on models arising in two specific application areas:
developmental biology and excitable media.

5. APPLICATION TO DEVELOPMENTAL BIOLOGY

Cellular automata of the form (1) have arisen in a variety of disciplines in developmental
biology [5]. We now focus on an interesting model of vertebrate skin patterns which is
based on local activation and inhibition [37].

5.1. The Model

Young’s model for vertebrate skin patterns [37] assumes that cells are in one of two
states—differentiated (colored) and undifferentiated. Each differentiated cell produces two

TABLE II

Errors and CPU Times for the Algorithm CG-Motion

Relative error Relative error
1t N (semi-discrete) (limiting motion) CPU

1/192 32 0.4% 4.3% 3 s
1/384 32 0.7% 3.0% 6 s
1/768 32 0.4% 0.7% 12 s
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TABLE III

Errors and CPU Times for the Algorithm CG-Motion

Relative error
1t N (semi-discrete) CPU

1/192 32 0.4% 3 s
1/192 64 0.06% 14 s
1/192 128 0.01% 65 s

diffusive chemicals: a short range “activator” and a longer range “inhibitor.” The activator
stimulates the differentiation of nearby undifferentiated cells and the inhibitor stimulates
nearby differentiated cells to become undifferentiated. The combined effect of these two
chemicals is modeled as the weighted difference of concentrations. See Fig. 8.

To discretize this continuum model, Young uses an automaton. The initial state is given
by

C0
jk =

{
1 if cell ( j, k) is differentiated

0 otherwise.

Updated states are found by spatially averaging over a circular neighborhood,N , and
applying a threshold function,

Cn+1
jk =

{
1 if

∑
j ′,k′∈NWj ′,k′Cn

j− j ′,k−k′ ≥ 0

0 otherwise,
(6)

whereW is a matrix derived from the weighted difference of chemical concentrations. Al-
though a variety of weights produce interesting steady-state patterns [26, 37], we shall study
the particularly natural choice of settingW equal to the difference of two Gaussians (see
Fig. 8c) [26]. Alternative choices include settingW to an approximation of the difference
of two scaled characteristic functions [37].

5.2. A Convolution-Based Discretization

The convolutional form of Young’s automaton is easily derived. Simply set

χ : Rd → R

FIG. 8. The steady-state activator (a) and inhibitor (b) concentrations about a differentiated cell are modeled
using Gaussian distributions. The inhibitor has a longer range than the activator. The combined effect (c) of
activator and inhibitor is modeled using the difference of the two Gaussian distributions.
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equal to the characteristic function for the differentiated region,Ä, and define the updated
region,Änew, to be the set

Änew= {x:χ ∗ K (x) > 0}

for the kernel function,K . The kernelK is not refined with1t since the time evolution of
the model is naturally discrete. (If such a refinement were carried out it would change the
scaling of the final patterns and would not produce a well-defined motion law.)

Solutions to this convolution-based model are efficiently obtained using the algorithm
CG-Motion. For example, the steady patterns given in Fig. 9 were obtained usingN= 128.
Note that these computations are fully resolved since further refinement inN leaves the
results unchanged. Automata-based solutions, however, are inefficient because interfaces
are poorly represented. Even using a lattice of 2048× 2048 grid points, an incorrect solution
is obtained using the algorithm RegularLattice for the caseK = K A − 4

5 KI .
Of course, the algorithm CG-Motion also efficiently (and trivially) treats more general

kernels. Asymmetric kernels are of particular interest because they can generate striped
patterns [37]. See Fig. 10 for an example.

FIG. 9. Isotropic pattern formation after 100 steps starting from a random checkerboard pattern. In each
case the kernel is the difference of two Gaussian distributions,K A(x)= 2500

π
exp(−2500|x|2) and KI (x)=

1250
3π

exp(− 1250
3
|x|2).
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FIG. 10. Anisotropic pattern formation. In this case, the kernel is asymmetric:Kanisotropic(x, y)=
2500
π

exp(−1250(2x2 + y2))− 1250
3π

exp(− 625
3
(x2 + 2y2)).

6. APPLICATION TO EXCITABLE MEDIA

In the biological and physiological literature, the best-known examples of cellular au-
tomata are the excitable media [5]. We now give a brief overview of cellular automata models
for excitable media and show that convolution-generated motion is useful for producing
improved approximations to certain features that are essential to the system.

6.1. Overview

In an excitable system, a sufficient stimulus (i.e., above some threshold value) leads
to a large response followed by a period of recovery to a stable rest state. Anexcitable
mediumis a spatially distributed excitable system coupled in such a way that excitation
can provoke excitation in neighboring regions. Note that these systems often experience a
recovery orrefractoryperiod during which the medium is unable to be re-excited regardless
of the size of the stimulus. Examples of excitable media arise in diverse physical, chemical,
and biological systems, including models for nerve cells, muscle cells, cardiac function,
developmental biology, chemical reaction, and star formation. See [32, 5, 30, 34] for further
details and references.

In early cellular automata models for excitable media, update rules were based on the
values in a neighborhood of nearest neighbors. Because this choice produces waves which
propagate at a speed of one cell per time step, several serious shortcomings occur [33, 8].
The most serious of these are [31, 13]:

1. The speed of propagation does not depend on the wavefront curvature.
2. The speed of propagation does not depend on the extent of recovery of the medium.
3. Unwanted anisotropy is added to the front motion.

In order to include the effects of dispersion,5 more recent automata select threshold
values according to the recovery of the medium [13, 30, 31, 10, 8, 9, 7, 16]. Averages over
large neighborhoods are used in an attempt to reduce unwanted anisotropy and to obtain
an approximation to the curvature component of the motion [13, 30, 31, 10, 8, 9, 7, 16].
Typically, this averaging step is carried out either directly [7, 16] (which is slow but general),
using a number of one-dimensional convolutions [13, 30, 31, 10, 8, 9] (which is efficient
but specialized), or pseudospectrally (which is efficientandgeneral—see Section 4).

5 The dependency of wave speed on the extent of recovery of the medium is known asdispersion.
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Although these changes give a significant improvement over early cellular automata
models, several serious objections remain:

1. Similar to the case of convolution-generated motion (see Section 4.2), the grid spacing
must be much less than the speed of propagation of the front times the time step size (see
Eq. (5)) or the thresholding step may keep the front stationary. This requirement can be
especially severe for excitable media simulations in 3D since important features such as
“vortex filaments” and “scroll rings” move with speed proportional to their local curvature
(which can be small) [29].

2. Wave fronts travel an integer number of cells per time step. Reducing these discon-
tinuities to an acceptable level can require a prohibitively large number of operations per
step (cf. Section 4.2). Gerhardtet al. explain this effect (for their automaton) as follows
[8]: “Waves tend to travel at integer speeds ... these discontinuities in wave speed cannot
be eliminated but they can be reduced by increasingr (the radius of the neighborhood).
However, asr increases, the number of cells per unit length must increase, so computation
time increases.”

3. Similar to the case of convolution-generated motion (see Section 4.2), an unwanted,
grid-based anisotropy is added to the motion.

4. In three dimensions, the simulation of “vortex filaments” is of great current inter-
est. Unfortunately current automata do not seem to be able to model the motion of these
structures. For example, Henze and Tyson state that in their simulations “updates in the
cellular automata may be too infrequent to resolve accurately the intraperiod fluctuations
that determine net filament displacement in the local normal and binormal directions” [13].
Indeed, for their automaton (or others [30, 31, 10, 8, 9]), “it is hard to address this potentially
paramount issue directly ... since it is impossible to change the time step independently of
the other parameters” [13].

5. Often, it is of great theoretical interest to determine geometric properties defined on
the interface (see, e.g., [29]). Because cellular automata use a crude approximation of the
front (see, e.g., Fig. 1), they often produce a very poor representation of such geometric
quantities. For example, Henze and Tyson [13] note that in 3D, “values of filament geometry,
twist, arclength derivative of twist and displacements based on cellular automata pivot cores
are very noisy compared with their PDE analogues.”

6. Finally, there is a possibility that certain dynamics of the media may not be captured
using automata which limit the excitation variable to only two states. Gerhardtet al.explain
this effect (for their automaton) as follows [8]: “The dynamics of the core of a spiral wave
can never be fully satisfactory in our cellular automaton because we limit the excitation
variable to two states only. Thus, we can never describe subtle differences in the excitation
variable, such as those present in the core of a spiral wave where criss crossing concentration
gradients seem to be important.”

As we shall see in the next section, many of these objections are simply artifacts of using
a lattice-based model and thus are naturally eliminated using convolution-based methods.

6.2. A Convolution-Based Model

Convolution-generated motion naturally eliminates many of the objections found in
automata-based models for excitable media. Furthermore, it is typically straightforward
to derive the convolutional form based on an automata model.
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FIG. 11. Typical phase plane diagram for an excitable medium. The local kinetics of the excitation variable
u and the recovery variablev are determined by the nullclines of the systems:f (u, v)= 0 andg(u, v)= 0. Small
perturbations from the unique rest state are damped out, while large perturbations cause the system to undergo a
large excursion before returning to the rest state.

Consider, for example, the excitable automata introduced in Gerhardtet al. [10, 8, 9],
Weimaret al.[30, 31], and Henze and Tyson [13]. In these automata, update rules are chosen
to mimic the dynamics of a two-variable system of reaction–diffusion equations,

∂u

∂t
= 1

ε
f (u, v)+ Du∇2u

∂v

∂t
= g(u, v)+ Dv∇2v,

where f (u, v) andg(u, v) specify the local kinetics of the system (see Fig. 11). Note that
the scalaru (the excitation variable) changes on a time scale which is much faster than the
scalarv (the recovery variable). To derive the corresponding automaton model, the reaction–
diffusion system is “split” in a non-convergent way into four steps which are carried out
sequentially (see the Appendix for details):

1. The excitation variable is diffused.
2. The diffused excitation variable is thresholded to 0 (resting) or 1 (excited) according

to the value of the recovery variable, i.e.,λ= λ(v).
3. The recovery variable is evolved according to the local kinetics.
4. The result from Step 3 is diffused to give the updated recovery variable.

Finally, the discretization is completed by representingu andv by their pointwise values
on a regular lattice.

The advantages of this automaton over earlier models are clear. Since large neighbor-
hoods are used, the motion of the wave front will exhibit fewer grid effects (i.e., reduced
anisotropy) and will have an improved dependence on curvature. Furthermore, dispersion
is included in the model since thresholding is carried out according to the value of the
recovery variable. Indeed, simulation results reported for FitzHugh-Nagumo kinetics [13]
and the Oregonator model [31] agree well with PDE simulations for the period, wavelength,
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and meander patterns6 of spiral waves for a wide range of parameters. When compared to
PDE simulations, the automata model has the practical advantage that it ignores the details
of the fast kinetics so that “the time step in the cellular automaton can exceed that in PDE
simulations by 1 or 2 orders of magnitude” [13].

Unfortunately, a variety of serious objections arise whenever a lattice-based spatial dis-
cretization is used. As discussed in the previous section, discontinuities in the motion and
unwanted anisotropy occur because the front travels an integer number of cells per time
step. A prohibitively fine mesh may be required in order to resolve the motion of important
features such as vortex filaments. Also, geometric quantities defined on the interface are
often impractical to estimate using an automaton because a very crude representation of
the front is used. Finally, we would like to be able to refine the time step independent of
other parameters in order to optimize the discretization and to determine the strengths and
limitations of the model. Unfortunately, this type of refinement is impossible whenever the
averaging step is carried out using the one-dimensional convolutions proposed in [13, 30,
31, 10, 8, 9].

Similar to the case of convolution-generated motion, we want to avoid discretizations
which use a pointwise thresholding because this type of thresholding displaces the front a
distance which is comparable to the mesh spacing. Fortunately, an improved discretization is
easily obtained. Steps 1 and 2 above are trivially treated using the algorithm CG-Motion. The
evolution of the recovery variable is similar, except that we must use Gaussian quadrature
rather than exact integration to evaluate the Fourier coefficients.

Similar to automata-based discretizations, this convolution-generated approach allows
for very large time steps (relative to PDE simulations) since it ignores the details of the
fast dynamics.7 Relative to automata-based discretizations, however, it is clear that our
approach gives a much more accurate treatment of the front since it recursively refines near
the interface and interpolates at the finest cell level. This allows for accurate estimates of
quantities defined on the interface and even captures the motion of features which depend
on curvature. Furthermore, discontinuities and unwanted anisotropy in the front motion
are eliminated since interpolation is used to locate the front at the finest cell level. Finally,
our proposed discretization has the benefit that1t can be selected independently of other
parameters, unlike the methods proposed in [13, 30, 31, 10, 8, 9].

We now give a number of numerical experiments which were derived using our proposed
discretization. More detailed studies will be the focus of a future report.

6.3. Numerical Experiments

We now apply our algorithms to the problem of simulating an excitable medium. For
simplicity, we consider the convolution-based model that corresponds to Barkley’s local
kinetics [1],

f (u, v) = u(1− u)(1− uth(v))

g(u, v) = u− v,

whereuth(v)= (v − a)/b anda andb are parameters. (See the Appendix for full details.)

6 Themeander patternis the path traced out by the tip of a spiral wave. See [34] for further details.
7 Since the details of the fast dynamics are ignored, this approach may be inadequate for modeling the dynamics

of the spiral core in certain problems (see previous section).
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FIG. 12. An isolated spiral wave. This simulation used Barkley’s dynamics witha= 0.3, b= 0.01, ε= 0.005,
andDu= 0.000625= Dv . The discretization parameters wereN= 64 and1t = 1/16.

If we apply the algorithm CG-Motion to this model, a variety of interesting spiral waves
are obtained. Figure 12, for example, gives an isolated spiral produced by this model. Notice
that the wave front is smooth and isotropic, even though only 128× 128 basis functions
are used. (Lattice-based discretizations for similar spirals exhibit considerable grid-based
anisotropy. See, e.g., Fig. 5 of [31].) Figure 13 demonstrates that colliding spirals can
be generated using the same model with different initial conditions. Note that all shape
changes are handled naturally by the method—no special treatment of topological mergings
or breakings is needed.

Of course, non-Gaussian kernels may also be used in the convolution step to produce
spiral waves with a desired anisotropy. The use of such asymmetric kernels will be consid-
ered as part of a future report.

7. CONCLUSION

In this work, we have presented convolution-generated motion both as a means for de-
scribing the limiting pattern dynamics of a class of cellular automata models and as an
independent, alternative foundation for expressing pattern producing models.

Conceptually, convolution-generated motion can be thought of as a class of models
intermediate between cellular automata and continuum PDEs, in that it eliminates the fine
scales of automata on the one hand, but it naturally describes perfect interfaces, which are
often obtained as singular limits of reaction–diffusion/Ginzburg–Landau type PDEs, at the
other extreme. Thus it simultaneously achieves the long length scale limit of automata and
the short length scale limit of reaction–diffusion PDEs, both of which are difficult limits to
analyze theoretically or simulate numerically. Convolution-generated motion also makes
accessible a large class of motions that cannot be conveniently described or approximated
by traditional PDE or automata methods.

From a computational standpoint, convolution-generated motion is easy to implement
since convolutions can be carried out as multiplications in Fourier space and threshold-
ing can be carried out using a simple quadrature. These methods are also efficient and
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FIG. 13. Excitation variable for two interacting spiral waves. All parameters are set according to Fig. 12.
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accurate because they can be implemented using adaptively refined grids with fast Fourier
transform methods. These properties lead to a variety of practical advantages. In particular,
these methods do not exhibit unwanted anisotropy and they capture curvature-dependent
motions that are impractical to study using automata-based discretizations. Furthermore,
convolution-based discretizations are much faster (e.g., 1000 times faster) when accurate
solutions are required. In addition, convolution-based algorithms produce smooth inter-
faces, thus allowing geometric quantities such as the interface normal and curvature to be
accurately evaluated. Motion parameters such as1t are easily varied independent of other
parameters in the model, as well.

Theoretically, convolution-generated motion has the desirable property that it is often
straightforward to derive the limiting motion laws for smooth interfaces [24]. Furthermore,
rigorous derivations of limiting motion laws have been obtained for an interesting variety
of convolution kernels and threshold values [15].

Based on these computational and theoretical advantages as well as our studies of models
arising in developmental biology and excitable media, we believe that convolution-generated
motion represents a useful, novel approach for modeling natural phenomena.

In future work, we shall carry out a detailed comparison of the convolution-based model
for excitable media with its reaction–diffusion PDE counterpart. In particular, it will be of
great interest to compare the motion of vortex filaments in three dimensions with asymp-
totically derived motion law [29] and with PDE simulations. Also, we plan a general inves-
tigation of the connection between convolution-generated motion and interface dynamics
described by the singular limit of reaction–diffusion/Ginzburg–Landau PDEs, similar to the
investigation of its connection with automata carried out in this paper.

APPENDIX

A Convolution-Based Model for Excitable Media

Gerhardtet al. [10, 8, 9], Weimaret al. [30, 31], and Henze and Tyson [13] devised a
convolution-based model for excitable media which mimics the dynamics of a two-variable
system of reaction–diffusion equations,

∂u

∂t
= 1

ε
f (u, v)+ Du∇2u

∂v

∂t
= g(u, v)+ Dv∇2v.

A variety of reaction dynamics may be simulated using their model [31, 13]. For simplicity,
this section considers the special case of Barkley’s local kinetics [1] (see Fig. 14),

f (u, v) = u(1− u)(1− uth(v))

g(u, v) = u− v,

whereuth(v)= (v − a)/b anda andb are parameters.
For these kinetics, the convolution-based approach derives estimates ofu andv at time

t+1t from the values at timet by “splitting” the reaction–diffusion system into four parts.
Each of these parts is treated sequentially as follows:
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FIG. 14. Phase plane diagram for Barkley’s local dynamics. Here, the nullcline foru is the linev= u, and
the nullcline forv consists of three lines:u= 0, u= uth(v) andu= 1.

1. Evaluate the convolution ofu(t) with the heat kernel,

ū = u(t) ∗ KDu,

where

KDu(x) ≡
1

4πDu1t
exp

(
− 1

4Du1t
|x|2
)
.

2. Threshold̄u by setting

ū=
{

1 if ū > λ(v)

0 otherwise.

The threshold value,λ(v), can be determined by demanding that the dependence of wave
speed on the state of recovery match that of the PDE [13]. For Barkley’s dynamics, the
speed of a planar wave can be derived analytically [28],

c(v)= (1− 2uths(v))

√
Du

2ε
.

To preserve this relationship between wave speed and recovery, it is easy to show (using
the 1D analytical solution to the heat equation) that

λ(v) = 1

2
− 1

2
erf

(
c(v)

√
1t

Du

)
.

3. Evolve the excitation and recovery variables according to the local dynamics for a
time1t . Specifically,

(a) Find the solution of ¯vt = g(ū, v̄) at timet +1t starting from ¯v(t)= v(t).



860 RUUTH, MERRIMAN, AND OSHER

(b) If v̄(t + 1t)> vMAX then the excitation variable changes in the interval and we
must:

• Find the time when the excitation variable changes; i.e., findt∗ so that ¯v(t∗)=
vMAX .

• Setū= 0.
• Find the solution of ¯vt = g(0, v̄) at timet +1t starting from ¯v(t∗)= vMAX .

(c) Update the excitation variable:u(t +1t)= ū.
4. Evaluate the convolution of ¯v with the heat kernel to obtain the updated value of the

recovery variable,

v(t +1t)= v̄ ∗ KDv

where

KDv
(x) ≡ 1

4πDv1t
exp

(
− 1

4Dv1t
|x|2
)
.

Note that Step 1 simply evolves the excitation variable according to the heat equation.
Steps 2 and 3 update each variable according to the local dynamics. Finally, Step 4 evolves
the recovery variable according to the heat equation.
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